파이썬에서 히스토리 클래스는 일련의 데이터를 시간 순서대로 저장하고 관리하는 기능을 수행하는 클래스일 것입니다. 예를 들어, 사용자의 작업 이력이나, 시간에 따른 데이터 변화 등을 기록하고 조회할 수 있는 클래스입니다. 이와 같은 목적을 위해 적합한 다차원 자료구조에는 다음과 같은 것들이 있습니다.

1. 리스트의 리스트 (2차원 배열)

리스트를 사용하여 각 타임스탬프에 해당하는 데이터를 2차원 리스트로 저장할 수 있습니다. 각 서브리스트는 하나의 타임스탬프에서 저장된 데이터를 나타냅니다.

예시:

class History:
    def __init__(self):
        # 히스토리를 저장할 2차원 리스트
        self.history = []

    def add_record(self, timestamp, data):
        # 기록을 추가
        self.history.append([timestamp, data])

    def get_record(self, index):
        # 특정 인덱스의 기록을 조회
        return self.history[index]

# 히스토리 클래스 사용 예시
h = History()
h.add_record("2024-10-22 10:00", {"temperature": 20, "humidity": 50})
h.add_record("2024-10-22 11:00", {"temperature": 21, "humidity": 55})

# 첫 번째 기록 조회
print(h.get_record(0))  # 출력: ['2024-10-22 10:00', {'temperature': 20, 'humidity': 50}]

2. 딕셔너리의 리스트

시간 순서와 데이터를 연결할 때 딕셔너리를 사용할 수 있습니다. 각 타임스탬프를 키로 하고 그에 해당하는 데이터를 값으로 저장할 수 있습니다.

예시:

class History:
    def __init__(self):
        # 히스토리를 저장할 딕셔너리
        self.history = {}

    def add_record(self, timestamp, data):
        # 기록을 타임스탬프를 키로 하여 딕셔너리에 저장
        self.history[timestamp] = data

    def get_record(self, timestamp):
        # 특정 타임스탬프의 기록을 조회
        return self.history.get(timestamp, "기록 없음")

# 히스토리 클래스 사용 예시
h = History()
h.add_record("2024-10-22 10:00", {"temperature": 20, "humidity": 50})
h.add_record("2024-10-22 11:00", {"temperature": 21, "humidity": 55})

# 특정 시간 기록 조회
print(h.get_record("2024-10-22 10:00"))  # 출력: {'temperature': 20, 'humidity': 50}

3. 큐(Queue)를 사용한 시간 기반 자료구조

시간에 따라 자료가 축적되는 히스토리 구조에서, 최신 데이터와 오래된 데이터를 구분하여 FIFO(First-In, First-Out) 방식으로 관리할 수도 있습니다. collections.deque를 사용하여 효율적인 큐 자료구조를 구현할 수 있습니다.

예시:

from collections import deque

class History:
    def __init__(self, max_size=10):
        # 고정 크기의 큐를 사용해 히스토리를 관리
        self.history = deque(maxlen=max_size)

    def add_record(self, timestamp, data):
        # 큐에 기록을 추가 (큐가 꽉 차면 가장 오래된 기록이 제거됨)
        self.history.append((timestamp, data))

    def get_all_records(self):
        # 모든 기록을 반환
        return list(self.history)

# 히스토리 클래스 사용 예시
h = History(max_size=5)
h.add_record("2024-10-22 10:00", {"temperature": 20, "humidity": 50})
h.add_record("2024-10-22 11:00", {"temperature": 21, "humidity": 55})
h.add_record("2024-10-22 12:00", {"temperature": 22, "humidity": 60})

# 모든 기록 조회
print(h.get_all_records())
# 출력: [('2024-10-22 10:00', {'temperature': 20, 'humidity': 50}), ...]

4. 판다스 데이터프레임 (DataFrame)

좀 더 복잡한 시간 기반 데이터를 처리하려면 pandas의 DataFrame을 사용할 수 있습니다. 타임스탬프를 인덱스로 사용해 데이터의 변화를 관리하기에 매우 유용합니다.

예시:

import pandas as pd

class History:
    def __init__(self):
        # 빈 데이터프레임 생성
        self.history = pd.DataFrame(columns=["timestamp", "temperature", "humidity"])

    def add_record(self, timestamp, temperature, humidity):
        # 데이터프레임에 기록 추가
        new_record = pd.DataFrame([[timestamp, temperature, humidity]], 
                                  columns=["timestamp", "temperature", "humidity"])
        self.history = pd.concat([self.history, new_record], ignore_index=True)

    def get_history(self):
        # 전체 히스토리 반환
        return self.history

# 히스토리 클래스 사용 예시
h = History()
h.add_record("2024-10-22 10:00", 20, 50)
h.add_record("2024-10-22 11:00", 21, 55)

# 전체 히스토리 조회
print(h.get_history())

요약:

  • 리스트의 리스트: 간단한 기록 저장에 적합.
  • 딕셔너리의 리스트: 타임스탬프 기반 데이터 저장에 유용.
  • 큐 (deque): 제한된 크기로 기록을 관리할 때 효율적.
  • 판다스 DataFrame: 시간 기반 데이터 분석에 적합.

히스토리 클래스의 복잡도와 성능 요구에 따라 적절한 자료구조를 선택하면 됩니다.

+ Recent posts