파이썬에서 히스토리 기반 통계 작성 클래스는 기록된 데이터를 바탕으로 다양한 통계 분석을 수행하는 기능을 제공합니다. 이 클래스는 시간에 따라 축적된 데이터를 저장하고, 그 데이터를 기반으로 평균, 최대값, 최소값, 변동성 등의 통계를 계산할 수 있습니다.

이러한 통계 작성 클래스를 설계하는 과정에서 다음과 같은 요소를 고려할 수 있습니다:

기능 요구사항:

  1. 데이터 기록: 데이터를 시간과 함께 기록.
  2. 통계 계산: 기록된 데이터에 대해 평균, 최대값, 최소값, 표준편차 등의 통계값을 계산.
  3. 필터링 기능: 특정 기간 동안의 데이터에 대해서만 통계값을 계산.
  4. 다양한 통계 제공: 전체 데이터의 통계뿐만 아니라 특정 범위나 조건에 맞는 통계도 제공.

클래스 설계

  • 데이터는 시간에 따른 여러 값이 저장되며, 각 값에 대해 통계를 계산할 수 있습니다.
  • pandas 라이브러리를 사용하면 데이터프레임을 통해 시간 기반 데이터를 효율적으로 관리하고 통계를 쉽게 계산할 수 있습니다.

예제 코드:

import pandas as pd

class HistoryStatistics:
    def __init__(self):
        # 히스토리 데이터를 저장할 데이터프레임 생성
        self.history = pd.DataFrame(columns=["timestamp", "value"])

    def add_record(self, timestamp, value):
        # 데이터프레임에 새로운 기록 추가
        new_record = pd.DataFrame([[timestamp, value]], columns=["timestamp", "value"])
        self.history = pd.concat([self.history, new_record], ignore_index=True)

    def get_average(self):
        # 값의 평균 계산
        return self.history["value"].mean()

    def get_max(self):
        # 값의 최대값 계산
        return self.history["value"].max()

    def get_min(self):
        # 값의 최소값 계산
        return self.history["value"].min()

    def get_standard_deviation(self):
        # 값의 표준편차 계산
        return self.history["value"].std()

    def filter_by_time_range(self, start_time, end_time):
        # 특정 시간 범위의 데이터를 필터링
        filtered_data = self.history[
            (self.history["timestamp"] >= start_time) & (self.history["timestamp"] <= end_time)
        ]
        return filtered_data

    def get_summary_statistics(self):
        # 요약 통계 정보 (평균, 최소값, 최대값, 표준편차 등) 제공
        summary = {
            "average": self.get_average(),
            "min": self.get_min(),
            "max": self.get_max(),
            "std_dev": self.get_standard_deviation()
        }
        return summary

# 히스토리 통계 클래스 사용 예시
history_stats = HistoryStatistics()

# 데이터 기록
history_stats.add_record("2024-10-21 10:00", 25)
history_stats.add_record("2024-10-21 11:00", 30)
history_stats.add_record("2024-10-21 12:00", 22)
history_stats.add_record("2024-10-21 13:00", 27)
history_stats.add_record("2024-10-21 14:00", 24)

# 전체 데이터에 대한 통계 계산
print("평균:", history_stats.get_average())  # 출력: 평균: 25.6
print("최대값:", history_stats.get_max())    # 출력: 최대값: 30
print("최소값:", history_stats.get_min())    # 출력: 최소값: 22
print("표준편차:", history_stats.get_standard_deviation())  # 출력: 표준편차: 3.361547

# 특정 시간 범위의 데이터 필터링 및 통계 계산
filtered_data = history_stats.filter_by_time_range("2024-10-21 11:00", "2024-10-21 13:00")
print("\n필터링된 데이터:\n", filtered_data)

# 요약 통계 출력
summary = history_stats.get_summary_statistics()
print("\n요약 통계:", summary)

코드 설명:

  1. 데이터 기록: add_record() 메서드는 타임스탬프와 값을 기록합니다.
  2. 통계 계산: get_average(), get_max(), get_min(), get_standard_deviation() 메서드는 각각 평균, 최대값, 최소값, 표준편차를 계산합니다.
  3. 시간 범위 필터링: filter_by_time_range()는 특정 시간 범위의 데이터를 필터링하여 반환합니다.
  4. 요약 통계: get_summary_statistics()는 평균, 최소값, 최대값, 표준편차 등을 한 번에 계산하여 요약 정보를 제공합니다.

통계 기능:

  • 평균 (Average): 모든 값의 평균을 계산.
  • 최대값 (Max): 기록된 값 중 가장 큰 값.
  • 최소값 (Min): 기록된 값 중 가장 작은 값.
  • 표준편차 (Standard Deviation): 데이터의 분산 정도를 계산.
  • 특정 시간 범위 통계: 특정 시간 구간에 대해서만 통계를 계산할 수 있도록 지원.

이 클래스는 시간에 따라 기록된 데이터를 바탕으로 간단한 통계부터 특정 범위에 대한 통계까지 유연하게 처리할 수 있습니다.

+ Recent posts