데이터 카드 자료구조에서 필터 기능을 구현하면 특정 조건에 맞는 데이터를 쉽게 조회할 수 있어 데이터 관리와 분석에 유용합니다. 필터는 예를 들어, 게임 플레이 데이터를 다룰 때 특정 점수 이상의 플레이어를 조회하거나 특정 날짜에 플레이한 기록만을 가져오는 경우에 사용할 수 있습니다.

필터 구현 설명

데이터 카드 자료구조에서 필터를 구현하려면 데이터 카드를 저장하는 클래스에 필터 메서드를 추가하여 조건에 맞는 데이터를 반환하도록 합니다. 파이썬의 filter 함수를 사용하거나, 리스트 컴프리헨션을 사용해 특정 조건에 맞는 카드만 추출할 수 있습니다.

예제 코드: 필터 메서드가 포함된 데이터 카드 클래스

다음은 GamePlayDataCardModel 클래스에 특정 조건에 맞는 카드를 필터링하는 메서드를 구현한 예제입니다.

# 데이터 카드 모델 클래스 정의
class GamePlayDataCardModel(list):
    def add_card(self, player_id, player_name, level, score, date):
        card = {
            "player_id": player_id,
            "player_name": player_name,
            "level": level,
            "score": score,
            "date": date
        }
        self.append(card)

    def filter_by_score(self, min_score):
        # 점수가 min_score 이상인 카드만 반환
        return [card for card in self if card["score"] >= min_score]

    def filter_by_date(self, play_date):
        # 특정 날짜에 플레이한 카드만 반환
        return [card for card in self if card["date"] == play_date]

    def filter_by_level_range(self, min_level, max_level):
        # 레벨이 특정 범위(min_level 이상, max_level 이하)에 있는 카드만 반환
        return [card for card in self if min_level <= card["level"] <= max_level]

# 데이터 카드 모델 인스턴스 생성
game_data = GamePlayDataCardModel()

# 데이터 카드 추가
game_data.add_card("player123", "GamerOne", level=5, score=1500, date="2024-10-21")
game_data.add_card("player456", "GamerTwo", level=3, score=1200, date="2024-10-21")
game_data.add_card("player123", "GamerOne", level=6, score=1800, date="2024-10-22")
game_data.add_card("player789", "GamerThree", level=4, score=900, date="2024-10-22")

# 필터링 예제: 점수가 1300 이상인 카드
high_score_cards = game_data.filter_by_score(1300)
print("Cards with score >= 1300:", high_score_cards)

# 필터링 예제: 2024-10-21에 플레이한 카드
date_filtered_cards = game_data.filter_by_date("2024-10-21")
print("Cards with play date 2024-10-21:", date_filtered_cards)

# 필터링 예제: 레벨이 3에서 5 사이인 카드
level_filtered_cards = game_data.filter_by_level_range(3, 5)
print("Cards with level between 3 and 5:", level_filtered_cards)

출력 예시

Cards with score >= 1300: [
    {'player_id': 'player123', 'player_name': 'GamerOne', 'level': 5, 'score': 1500, 'date': '2024-10-21'},
    {'player_id': 'player123', 'player_name': 'GamerOne', 'level': 6, 'score': 1800, 'date': '2024-10-22'}
]

Cards with play date 2024-10-21: [
    {'player_id': 'player123', 'player_name': 'GamerOne', 'level': 5, 'score': 1500, 'date': '2024-10-21'},
    {'player_id': 'player456', 'player_name': 'GamerTwo', 'level': 3, 'score': 1200, 'date': '2024-10-21'}
]

Cards with level between 3 and 5: [
    {'player_id': 'player456', 'player_name': 'GamerTwo', 'level': 3, 'score': 1200, 'date': '2024-10-21'},
    {'player_id': 'player789', 'player_name': 'GamerThree', 'level': 4, 'score': 900, 'date': '2024-10-22'}
]

코드 설명

  • filter_by_score 메서드: min_score 이상의 점수를 가진 카드를 필터링하여 반환합니다.
  • filter_by_date 메서드: 특정 날짜에 플레이된 카드만 필터링하여 반환합니다.
  • filter_by_level_range 메서드: 특정 레벨 범위 내(min_level ~ max_level)에 속하는 카드만 필터링하여 반환합니다.

이 구조의 장점

  • 가독성: 조건에 맞는 필터링을 메서드로 정의하여 코드 가독성이 높습니다.
  • 재사용성: 다양한 조건에 따라 데이터를 쉽게 필터링할 수 있습니다.
  • 유연성: 카드 데이터가 추가되더라도 동일한 필터링 메서드를 사용할 수 있어 유연한 데이터 관리가 가능합니다.

이와 같은 필터 기능을 활용하면, 큰 데이터에서 필요한 정보만 추출하거나 특정 조건의 데이터만 분석하는 데 유리합니다.

+ Recent posts